III B.Tech - II Semester – Regular Examinations – JUNE 2023

MATLAB PROGRAMMING (Common to All Branches)

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Explain the different Arithmetic operators	L2	CO1	7 M				
		used in MATLAB with examples.							
	b)	Illustrate the elementary math built in	L3	CO2	7 M				
		functions used in MATLAB with examples.							
	OR								
2	a)	Define two variables, alpha= $5\pi/9$, beta= $\pi/7$.	L2	CO1	7 M				
		Using these variables, show that the							
		following trigonometric identity is correct							
		by calculating the value of the left and right							
		sides of the equation.							
		$\cos\alpha - \cos\beta = 2 \sin \frac{1}{2}(\alpha + \beta) \sin \frac{1}{2}(\beta - \alpha)$							
	b)	Illustrate the significance of command	L3	CO2	7 M				
		window in MATLAB.							
	1	1	<u> </u>	<u> </u>					

		UNIT-II			
3	a)	Find the solution for $4x+2y+3z=4$,	L3	CO2	7 M
		3x+3y+4z=2, $4x+6y+6z=8$ and explain its			
		execution in MATLAB.			
	b)	Discuss about character strings, character	L2	CO1	7 M
		string functions with suitable examples in			
		MATLAB coding.			
		OR			
4	a)	Develop a program for the following: Create	L3	CO2	7 M
		two row vectors $v=41:-3:29$ and $w=17:4:37$.			
		Then, by only using the name of the vectors			
		(v and w), create a row vector u that is made			
		from the elements of w followed by the			
		elements of v.			
	b)	Illustrate the array division in MATLAB.	L3	CO2	7 M
		UNIT-III			
5	a)	Explain the following 2-D plots used in	L4	CO4	7 M
		MATLAB.			
		i) bar ii) barh iii) stairs iv) stem			
	b)	Sketch the Plot y=tsin(t) for $0 \le t \le 100$ and	L3	CO4	7 M
		see to it that Y-axis is amplitude and			
		X-axis is time and title is $y(t)$.			
		OR			
6	a)	Explain with examples line, mesh and	L4	CO3	7 M
		surface plots.			
	b)	Explain plotting multiple plots on the same	L4	CO3	7 M
				1	

UNIT-IV								
7	a)	Illustrate relational and logical operators used in MATLAB.	L3	CO2	7 M			
	b)	Develop a program to check the given number is a prime number or not.	L3	CO2	7 M			
OR								
8	a)	Develop a program to find out the Fibonacci Series.	L3	CO2	7 M			
	b)	Illustrate the syntax of if, if-else, and for loop Operators in MATLAB.	L3	CO2	7 M			
UNIT-V								
9	a)	Illustrate the different methods of interpolation used in MATLAB.	L3	CO3	7 M			
	b)	Develop the code to divide the polynomial $15X^5 + 15X^4 - 35X^3 - 19X^2 + 8X$ -15 by the polynomial $6X^3$ -4X +8.	L3	CO4	7 M			
OR								
10	a)	Discuss and analyze the solution of one- variable equation available in MATLAB.	L4	CO3	7 M			
	b)	Explain the Finding minimum or maximum of a function in MATLAB.	L4	CO3	7 M			